Low protein intake, muscle strength and physical performance in the very old

September 21st, 2017

Newcastle University
Causes of non-optimal protein intake and utilisation in older adults

- Inadequate intake of protein (e.g., anorexia of aging)
- Reduced ability to use available protein (e.g., insulin resistance, protein anabolic resistance, high splanchnic extraction, immobility)
- Greater need for protein (e.g., inflammatory disease, oxidative modification of proteins)

Muscle strength & Physical performance

Loss of functionality (muscle, bone, immune systems)

Bauer et al 2013: PROT-AGE study group position paper, EUGMS
Protein requirements

• RDA 0.8 g/kg BW/d does not take into account multimorbidity, physiological changes, reduced physical activity and appetite in the very old 1-3

• 1-1.5 g/kg BW/d
 – 25-30g/meal (~10g EAA)
 – adjusted (ideal) body weight 4

Aims

• Association low protein intake (<1 g/ kg aBW/d), and muscle strength (grip strength, GS) and physical performance (Timed Up-and-Go, TUG) in the very old over 5 years.

• Explore if physical activity (PA) and protein intake distribution across the day influence these relationships.
The Newcastle 85+ Study

845 with health assessments and GP records data

+ 188 GP records data only

805 consented to dietary assessment

Excluded 12 with a single-day diet recall

793 (98.5%) complete 2x24-MPR

Excluded 2 without health assessment

791 with complete baseline data

722 lived in community

Analytic sample
Methods

• **Protein intake**
 - 2x24hr MPR to estimate protein intake
 - <1 g/kg aBW/d (Low protein intake) *
 - ≥1 g/kg aBW/d (Good protein intake).

• **Outcomes**
 - Decline in GS and TUG (baseline, 1.5, 3 and 5y follow-up)
 - Mixed linear models (stratified by sex and protein intake group)

• **Confounders**
 - Anthropometry, health-related, diet-related, life style, attrition

* Adjusted body weight to reflect a healthy BMI in those ≥71, Berner LA et al J Acad Nutr Diet 2013;113:809-15
• **no association** between low protein intake and GS in men.
• Protein distribution **was not associated** with GS in men.
• association between low protein intake and GS at baseline
• not with GS decline over time
• protein distribution was not a significant predictor of GS
• ↑PA predicted the rate of GS decline in the good protein intake group (grey lines), but not the rate in low protein (black lines).
• good protein intake group with low PA had the worst GS trajectory.
Decline in TUG by protein intake in men

- low protein intake was not associated with TUG in men.
- no significant interactions (PA*time)
Decline in TUG by protein intake in women

- low protein intake was associated with worse TUG at baseline only in women
- no interactions (PA*time) were found
- protein distribution was not associated with TUG
Conclusion

- Protein intake <1g/ kg aBW/d was associated with -0.83 kg GS and worse TUG in women at baseline only after adjustment for a range of confounders.
- Confirms previous reports that a higher protein intake above the current RDA is needed.
- Suggests that higher PA may be ineffective in the very old if protein intake is not adequate.
Acknowledgement

Funding for this research is provided by the European Horizon 2020 PROMISS Project ‘Prevention Of Malnutrition In Senior Subjects in the EU’, Grant agreement no. 678732 (AG, CJ). The content only reflects the author’s view and the Commission is not responsible for any use that may be made of the information it contains.

Thank you